Генеративно-состязательная сеть
Это заготовка статьи. |
Генеративно-состязательная сеть (англ. Generative adversarial network, сокращённо GAN) — алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы (см. Генеративная модель[en]),а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных (см. Дискриминативная модель[en]). Так как сети G и D имеют противоположные цели — создать образцы и отбраковать образцы — между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу[en] из компании Google в 2014 году[1].
Использование этой техники позволяет в частности генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото[2]. Кроме того GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий.
Ссылки
- ↑ Ошибка цитирования Неверный тег
<ref>; для сносокMyUser_Arxiv.org_April_7_2016cне указан текст - ↑ Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec & Chen, Xi (2016), Improved Techniques for Training GANs, arΧiv:1606.03498 [cs.LG]